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Multiscale model for microstructure evolution in multiphase materials: Application to the growth

of isolated inclusions in presence of elasticity

Danny Perez* and Laurent J. Lewis'

Département de physique et Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C. P. 6128

Succursale Centre-Ville, Montréal (Québec), Canada H3C 3J7
(Received 25 May 2006; published 26 September 2006)

We present a multiscale model based on the classical lattice time-dependent density-functional theory to
study microstructure evolution in multiphase systems. As a first test of the method, we study the static and
dynamic properties of isolated inclusions. Three cases are explored: elastically homogeneous systems, elasti-
cally inhomogeneous systems with soft inclusions, and elastically inhomogeneous systems with hard inclu-
sions. The equilibrium properties of inclusions are shown to be consistent with previous results: both homo-
geneous and hard inclusions adopt a circular shape independent of their size, whereas soft inclusions are
circular below a critical radius and elliptic above. In all cases, the Gibbs-Thomson relation is obeyed, except
for a change in the prefactor at the critical radius in soft inclusions. Under growth conditions, homogeneous
inclusions exhibit a Mullins-Sekerka shape instability [W. Mullins and R. Sekerka, J. Appl. Phys. 34, 323
(1963)], whereas in inhomogeneous systems, the growth of perturbations follows the Leo-Sekerka model [P.
Leo and R. Sekerka, Acta Metall. 37, 3139 (1989)]. For soft inclusions, the mode instability regime is
gradually replaced by a tip-growing mechanism, which leads to stable, strongly out-of-equilibrium shapes even
at very low supersaturation. This mechanism is shown to significantly affect the growth dynamics of soft
inclusions, whereas dynamical corrections to the growth rates are negligible in homogeneous and hard inclu-
sions. Finally, due to its microscopic formulation, the model is shown to automatically take into account
phenomena caused by the presence of the underlying discrete lattice: anisotropy of the interfacial energy,
anisotropy of the kinetics, and preferential excitation of shape perturbations commensurate with the rotational

symmetry of the lattice.
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I. INTRODUCTION

It is well known that many macroscopic properties of ma-
terials, such as tensile resistance, electric conductivity, duc-
tility, etc., are directly related to the microscale structure.
However, the microstructure is a dynamical entity: it evolves
continuously inducing changes in the properties for which
the material was initially designed. It is thus of prime impor-
tance to understand the forces driving microstructural evolu-
tion in order to tailor materials that are able to maintain their
properties over long time scales. However, this task has
proven formidable because, in “real-life” materials, the ob-
served microstructure is the result of a delicate balance be-
tween many competing physical processes. For example, in
the common case of two-phase materials, which is the sub-
ject of this paper, the microstructure consists of inclusions
embedded within a matrix. In general, the inclusions and the
matrix will have different physical properties (elastic con-
stants, diffusion constants, lattice parameters, etc.) so that the
free energy (which is minimized during microstructural evo-
lution) will have chemical, interfacial, and elastic compo-
nents. In order to study the formation and evolution of the
microstructure, a description of each of these components is
required.

The first step toward a complete understanding of the evo-
lution of the microstructure is to identify the equilibrium
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state toward which simple systems proceed. For two-phase
systems without lattice misfit, the shape of an isolated inclu-
sion is strictly driven by interfacial energy considerations
and can thus be obtained simply by using a Wolff construc-
tion. However, in the presence of lattice misfits, the situation
is much more complicated. Indeed, the problem of finding
the free-energy-minimizing configurations is an old one (see
Ref. [1] for a recent review). The basic behavior of these
systems is now well established in the simplest cases. For
example, in the case of inhomogeneous but isotropic elastic-
ity and isotropic interface energy, isolated spherical hard in-
clusions are stable for all sizes, i.e., the equilibrium shape of
the inclusions is not affected by the elastic contributions to
the free energy [2]. However, if the inclusions are softer than
the matrix, the spherical shape is only stable at small radius;
at large radius the symmetry is broken and the equilibrium
shape becomes increasingly elliptic [2].

Although the structural behavior of isolated inclusions is
now well known, much less is known about the relation be-
tween their structure and their coarsening behavior. (A no-
table exception is the recent work of Thornton et al. [3] and
of Li et al. [4] concerning homogeneous and inhomoge-
neous, anisotropic elasticity with isotropic surface energy.)
In order to make this connection, the effect of shape changes
on the solute concentration, or equivalently on the chemical
potential, inside and around the inclusions has to be studied.
This information, taking the form of a so-called Gibbs-
Thomson relation, is essential to understanding the coarsen-
ing dynamics of a system of diffusively interacting inclu-
sions, since it dictates the rate at which a given inclusion of
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a particular size (and shape) grows or dissolves. However,
for the knowledge of the equilibrium properties to be really
useful, it must be the case that, at any given time, the micro-
structure is close to equilibrium. Therefore, the effect of fi-
nite growth rates on the coarsening behavior has to be as-
sessed. The morphological consequences of finite growth
rates on the inclusions have also been thoroughly investi-
gated [5-9], but the relation between shape perturbations and
chemical potentials and, hence, coarsening behavior, is much
less understood. In order to assess the importance of dynami-
cal effects, it is necessary to study the effect of the dynamical
corrections on the Gibbs-Thomson relation.

In this paper, we study the equilibrium and dynamical
properties of isolated inclusions in the case of homogeneous
and inhomogeneous, isotropic elasticity under varying
growth rate, and infer the consequences of dynamical correc-
tions on the coarsening behavior of systems of inclusions.
This is achieved using a two-dimensional, multiscale model
based on the classical lattice time-dependent density-
functional theory (TDDFT) [10,11]. The focus of this work is
twofold: first, we validate the methodology by comparing
our observations to theoretical models or numerical simula-
tions (mainly concerning morphological aspects); second, we
present results for the connection between morphology and
the coarsening behavior of inclusions.

Anticipating our results, we observe that the classical
Gibbs-Thomson behavior is obeyed in homogeneous circular
inclusions, as expected. Under imposed growth, shape insta-
bilities develop and, for small amplitudes, their behavior is
consistent with the predictions of the Mullins-Sekerka theory
[5]. The microscopic resolution of our model enables us to
identify an efficient excitation process for modes with the
same rotational symmetry as that of the lattice. The impact of
growth on the chemical potentials of the inclusions is then
characterized, and we show that dynamical corrections to the
coarsening behavior are small. Hard inclusions are observed
to also exhibit the Gibbs-Thomson behavior. Elasticity is
shown to have a stabilizing effect against shape perturbation
growth, in agreement with the theory of Leo and Sekerka [6].
In this case also, dynamical corrections to the growth dy-
namics are small. Finally, for soft inclusions, we observe the
expected equilibrium transition between circular and elliptic
shapes and quantify its effect on the chemical potentials of
the inclusions. Soft inclusions are found to be extremely sen-
sitive to growth conditions: strongly out of equilibrium
shapes form and survive even at very low supersaturation.
Although the behavior predicted by the Leo and Sekerka
model is observed at small radii, we find that an elastically
induced growth mechanism favoring the growth of tips
dominates the evolution at larger sizes. The effect of dynami-
cal corrections on the growth dynamics is shown to be sig-
nificant in this case because of the important morphological
changes induced by finite growth rates.

The paper is organized as follows. In Sec. II, we describe
the model, its multiscale generalization, and the methodol-
ogy used to solve the relevant system of equations. In
Sec. III, we present the results of our calculations for
homogeneous, hard and soft inclusions, respectively. In each
case, we describe the equilibrium properties of isolated in-
clusions, then investigate how these properties are affected
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by finite growth rates and examine the importance of these
corrections on the coarsening rate. Finally, in Sec. IV, we
discuss the implication of our results for the description of
the coarsening kinetics of a collection of inclusions.

II. METHODOLOGY

The microstructural evolution of a multiphase material in
presence of elastic misfits is an intrinsically multiscale prob-
lem: on the one hand, at moderate temperatures, the inter-
phase boundary is only a few atomic-layers thick so that
mechanical and chemical properties of the material may vary
strongly on a nanometer length scale; on the other hand, the
elastic strain field caused by the presence of the inclusion is
very long ranged. Adding to the difficulty is the coupling
between thermodynamics, diffusion, and elasticity: elastic
stresses can affect the local chemical potentials inside the
material, thus causing diffusion fluxes that modify the elastic
response of the system, and so on.

However, most models proposed thus far to study two-
phase systems with elastic misfits are essentially single
scale—macroscopic sharp-interface models [3,12—14], meso-
scopic diffuse interface models (also known as phase-field
models) [15-17], or microscopic Monte Carlo models
[18-21]—and thus suffer from some drawbacks. First, sharp-
interface models assume the interfaces to be infinitely thin
and structure less, thus lacking internal length scales. These
have to be introduced a posteriori if scale-dependent effects
(such as shape transitions as a function of size) need to be
taken into account. Also, interphase boundary conditions
have to be devised artificially in order to introduce proper
physics into the models (e.g., solute concentration vs inter-
face curvature or strain relations must be specified) which,
for simplicity, often rely on some local equilibrium assump-
tion. Relevant physical parameters (diffusion constant, elas-
tic constants, etc.) are also needed as input. Finally, the mod-
els do not easily allow for topological changes in the
microstructure (merging of inclusions for example).

Diffuse interface methods, for their part, assume that all
physical properties of the microstructure vary smoothly on
the scale of the grid used in the calculations. However, in
typical two-phase microstructures, the interfaces are a only
few nanometers thick. This imposes strong limitations on the
possible grid sizes if quantitative results are sought. Even if
this requirement is somewhat relaxed, the grid size still
needs to be smaller than any other length scale in the system.
In the presence of elastic effects, this constraint can be se-
vere [22]. Furthermore, these models need external input for
the thermodynamic (e.g., bulk free energy vs concentration,
chemical potential vs strain), elastic (e.g., elastic constants),
and diffusion (e.g., temperature or concentration dependence
of the diffusion rates) properties of the material, and the
coupling between these properties. Despite these limitations,
macro- and mesoscopic simulations (MMS) are extremely
powerful tools since they enable very large systems, com-
posed of many inclusions, to be studied over long durations.

At the other end of the spectrum, Monte Carlo models are
formulated directly on the atomic scale, the natural scale for
describing interphase boundaries. Furthermore, the thermo-
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dynamic and elastic properties are implicitly obtained from
the microscopic description of the interactions between at-
oms. This microscopic description also allows one to specify
the microscopic diffusion processes and to automatically
take the composition dependence of the diffusion rates into
account. However, these nice features come at a very high
computational cost, so that such calculations are restricted to
small systems over short time scales. Since elastic interac-
tions are long ranged and their effects usually predominate
over interface effects only in the late stages of the coarsening
process, Monte Carlo simulations are seldom used in this
context. The causes of this inefficiency compared to MMS
are fourfold. First, Monte Carlo moves are essentially local
in nature so that a large number is required to significantly
alter the microstructure, whereas for MMS, the update steps
are global. Second, except at very low temperature, many of
the moves are, in fact, thermal “noise;” thus, although on
average they tend to relax the microstructure, on an indi-
vidual basis they do not contribute significantly to the relax-
ation process. These thermal fluctuations are already aver-
aged out in MMS, so that every step directly contributes to
the structural evolution. Third, the time step is roughly con-
stant throughout the simulation, independent of the time
scale on which the microstructure evolves; in constrast, the
time step for MMS can be adjusted dynamically. Finally, the
number of degrees of freedom required to describe the mi-
crostructure is very large since all atomic sites are explicitly
taken into account, whereas in MMS one degree of freedom
represents a large number of atomic sites.

One way around this efficiency problem is to consider
equations for the evolution of the average occupation state of
each lattice site. In this way, thermal fluctuations can be in-
tegrated out and global updates of the system become pos-
sible. Even if such equations cannot be derived exactly, sev-
eral approximation schemes have been proposed in recent
years to simulate phase separation without elastic misfit (see
Refs. [11,23,24], for example). Although these approaches
are able to bypass the first three drawbacks of the Monte
Carlo method, the problem of the large number of degrees of
freedom remains. Here, we propose to solve this last point by
using a multiscale generalization of one of the aforemen-
tioned schemes, namely, the TDDFT of Fisher and collabo-
rators [11]. We also propose an extension of this framework
to include the effect of elastic misfits. The remaining part of
this section will be organized as follows: first, we outline the
derivation of the TDDFT equations and describe how elastic
effects can be included within the model; second, the multi-
scale generalization of the microscopic model is presented;
finally, we give a brief description of the algorithmic tools
used in our
implementation of the model.

A. The TDDFT formalism

We begin by deriving the main equations of TDDFT.
Since a detailed description of the theory is already available
in the literature (see Ref. [11], and references therein), only
the main steps are outlined here for completeness. Consider a
system of interacting particles on a lattice. The state of the
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lattice sites can be described by an ensemble of occupation
numbers n;" for a-type particles at site i. Assuming that each
site can be occupied by only one particle (n;" equals either 0
or 1), the dynamics of the system can formally by described
by the following master equation for the probability to find
the system in the configuration n={n{"} at time r:

dP(n,?) 1

dt Ei‘jgi(i) [w;(M)P@,t) —w; (n)P(n,0)]. (1)

Here, it is assumed that a configuration evolves in time
through successive exchanges of nearest-neighbors particles
[nn(i) denotes the set of nearest neighbors of site i]. These
exchanges proceed at rate wi,j(n); T represents a configura-
tion that differs from n only by the exchange of the occupa-
tion numbers of sites i and j. From Eq. (1), a local master
equation describing the dynamics of the average occupation
numbers p;'=(n{"), [where (), denotes an average with respect

to the distribution P(n,t)] is obtained
dp; o _ ¢
o > IO = P, (2)

jenn(i),B
with the diffusion fluxes defined as
B.a _ ,Ba
J74 () = ninfw; (n). (3)

The problem now is to evaluate the average diffusion fluxes.
The main assumption of TDDFT is that the full nonequilib-
rium distribution function P(n,7) can be approximated by the
local equilibrium distribution function P'(n,7) of the Sys-
tem under an external, site-dependent field A,

1

1
P'(n,1) = — expq —
(n,7) P\ LT

Z(1)

where H is the Hamiltonian of the system and Z(r) is such
that =, P'°°(n,7)=1. The problem of computing the nonequi-
librium distribution function in configuration space is now
replaced by that of determining the {4} in real space. This is
achieved by requiring consistency between P'°(n,) and the
{p{(t)}. The idea behind this assumption is that high-order
correlations should relax rapidly compared to the site occu-
pation averages; hence, after a short initial transient, the
high-order correlation functions should take values close to
the ones they would relax to if the average occupations were
kept constant by some external constraint. The validity of
this assumption has been confirmed by Chen [23] who has
shown that the dynamics of a system where pair-correlation
functions are allowed to evolve following their own equa-
tions of motion is quantitatively very similar to that of a
system where instantaneous equilibrium of the pair correla-
tion functions relative to the site occupation averages is as-
sumed. Furthermore, it was shown [25] that the TDDFT ap-
proach yields results in excellent agreement with direct
Monte Carlo simulation in cases where the exact free energy
functional is available.

Formally, self-consistency can be achieved by requiring
that the grand canonical potential of the system under the
external field be a minimum with respect to the average
occupations, i.e., the i are such that

S| @
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4 op)=<L

W - ul)p®+ F(p) [=0, (5
dp dp > (hf = p&)pi+ F(p) (5)

i,a

where p={p{"}, ug, is the global chemical potential of spe-
cies a, and F(p) is the free-energy functional of the system.
From this last equation, it is now clear that the local fields
are proportional to the local chemical potentials

F
h?=ﬂf‘ét-&—a=ﬂﬁn—ﬂf’~ (6)

Ip;
To complete the evaluation of the fields, one must specify a
free-energy functional. In our case, we opted for a simple
mean-field (or Bragg-Williams) approximation, which, even
if it usually cannot reproduce experimentally observed phase
diagrams in a quantitative manner, gives a qualitatively cor-
rect description of the phase separation process. This

functional can be written as follows

1
Flp)=E(@) -TS(p)=7 X Vifoipf
i,jenn(i),a,B
+kpT>, plin pe, (7)

i,

with ij'-B the interaction energy between atom « at site i and
atom @ at site j.

Other assumptions are required in order to obtain a trac-
table form for the average diffusion fluxes. First, it is as-
sumed that configuration changes can only occur by vacancy
diffusion to a nearest-neighbor site (vacancy-exchange
mechanism). Second, these exchanges occur at a rate given
by

wi= voeli kel (8)

where E is the energy of an a-type atom at site i and v is
a trial frequency. This assumes that the saddle point energy is
zero in every configuration.

Combining this last result with Egs. (3) and (4), we obtain
a very simple form for the local master equation [Eq. (2)]

dp;’

o j%m M; (LA} (1) - AF(0], 9)
with mobility M, (t)= (pY*ey(p) p}/acanCY(t)>l

=p; " ()p;*" (1) and activity A1) =¢ " WksT This
equation is a generalized Fick’s law, where occupation prob-
abilities diffuse from regions of high activity (and, hence,
high chemical potential) to regions of low activity. It can be
shown that this equation of motion leads to a continuous
decrease of the free-energy evaluated through Eq. (7) and,
hence, that a stationary state of Eq. (9) corresponds to a
free-energy minimum. Even if TDDFT is a mean-field for-
malism, this shows that it yields an evolution that is consis-
tent with the equilibrium statistics specified by the free-
energy functional. Furthermore, as previously mentioned,
TDDFT and Monte Carlo results were shown to be nearly
identical for both equilibrium and dynamical quantities for
cases where the exact energy functional is known [25]. Thus,
in the present case, we cannot expect quantitative agreement
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with Monte Carlo simulations. However, since we are not
seeking quantitative results, but rather insights into the basic
physical behavior, we expect this simple approximation to be
adequate. The use of higher-order approximations of the free
energy will be the subject of future work.

B. TDDFT with elastic misfit

In the formalism described above, the atoms are con-
strained on a rigid lattice. Thus, the effect of an elastic misfit
cannot be accounted for. One way to introduce elastic relax-
ation effects is to allow the interaction energies in Eq. (7) to
depend on the positions of the atoms. For simplicity, we
opted for a simple harmonic potential

Vil = kB (ry = o*P)? — P, (10)

where r; ;=|r;—rj|. The average positions r; are then obtained
by requiring that they minimize ) [or equivalently the

energy in Eq. (7)], i.e.,

d d o o o
EQ(P,T) = E[% (hi - :ulot)pl +F(p,r)

:O:iE(p,r):O. (11)
dr

In this way, if we select different values of the lattice param-
eter o for the interaction between different species, a lattice
mismatch is introduced. Furthermore, if we select different
values of the stiffness k, an elastic inhomogeneity results.
Likewise, the strength of the driving force for the phase
separation can be tuned according to €. Note that for nearest-
neighbor, two-body interactions, such as the ones used here,
the elastic constants are always isotropic.

Concerning the accuracy of this formulation, two remarks
are in order. First, this procedure completely neglects local
relaxation effects, i.e., the same displacement field is used to
compute, say, Ef and E,B This somewhat overestimates the
effect of the strain, since local relaxation is expected to be
most effective in severely strained configurations. Second, in
the present approach, elasticity is introduced at the mean-
field level since atoms interact with the free-energy-
minimizing displacement field, not the displacement field
corresponding to a particular microscopic configuration.
These two limitations are not expected to be severe in the
case of a system composed of a set of almost pure inclusions
embedded in an almost pure matrix (typical of the micro-
structures produced during phase separation processes), since
every microscopic configuration that has a significant prob-
ability of being observed will have a displacement field very
similar to the free-energy minimizing one. Thus, these ap-
proximations are expected to yield very good results when
used in a phase separation context.

Finally, we assume that the neighbors of an atomic site do
not change during the course of a simulation, i.e., elastic
coherency is enforced and the contribution of plastic effects
is excluded.

C. Multiscale generalization

The TDDFT model described in Sec. IT A is essentially
microscopic in nature since every lattice site is explicitly
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taken into account. This imposes severe constraints on the
system sizes that can be studied. In order to alleviate this
limitation, we propose a multiscale generalization of TDDFT
where the number of degrees of freedom can be dynamically
adjusted as the calculation proceeds. In the following, we
describe first the coarse-graining procedure of the TDDFT
local master equation [Eq. (9)], then the elastic equilibrium
equation [Eq. (11)].

1. Coarse graining of the TDDFT equations

As discussed earlier, a typical microstructure observed in
phase-separating systems consists of well-defined inclusions
embedded in a matrix. Within each of these structures, the
average occupation field varies very slowly. The only rapid
changes occur close to the interphase boundaries. Thus,
atomic resolution is, in principle, only needed close to the
interfaces, whereas lattice sites located far from these inter-
faces can collectively be described using fewer degrees of
freedom. To achieve this, two ingredients are required: (i) a
coarse-grainable representation of the average occupation
field and (ii) a method to solve Eq. (9) in this representation.

For (i), we proceed as follows. First, we select a set of
atomic sites whose average occupations are representative of
their neighborhoods (the procedure used to build this set will
be described in Sec. II D); those sites will be referred to as
representative sites. When needed, the average occupation of
nonrepresentative sites are obtained by a Laplace interpola-
tion [26] defined as follows. Let x be a point in space; the
Laplace interpolant for a general scalar function f(x) is

N,

rep

f(x) =2 sx)fi (12)
i=1

where Ny, is the number of representative sites, f; is the
(known) value of the function f at representative site i, and
¢;(x) is the value of the Laplace shape function of site i
evaluated at x. We now consider a Voronoi tesselation of
space using the representative site and point x. The shape
function can then be written as

(%) ml(x)]
(X)= =, s(x)= , 13
%) S W=7 (13)

with d ;(x) the distance between x and the representative site
Jj» and m[t;(x)] a measure of the common facet (length in
two-dimensions and area in three dimensions) between the
Voronof cells of site j and of point x; if the two cells do not
share facets, m[,(x)]=0. A review of the properties of this
interpolant can be found in Ref. [26].

The Voronoi tesselation of space using the representative
sites provides a definition of the “neighborhood” of a repre-
sentative site: all lattice sites found within the Voronof cell of
a given representative site belong to its neighborhood. The
last step is to reformulate Eq. (9) in terms of the average
occupations of the neighborhoods instead of the average oc-
cupations of the lattice sites. Concerning point (ii), the key is
to realize that this equation is essentially a diffusion equation
for the occupation probabilities, with a probability flux be-
tween adjacent sites proportional to the activity difference
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between the two sites. Since the total occupation probabili-
ties are conserved, this can easily be translated into a coarse-
grained representation by using the finite-volume method.
The time derivative of Eq. (9) is then written in terms of the
diffusion fluxes crossing each facet of the Voronoi cells of
the representative sites; on an arbitrary grid, Eq. (9) becomes

dp}

b .
" > M O[AND) - AM(D)]-L (14)

jenn(i) di,jNi

with d, ; the distance (in lattice constants) between represen-
tative sites i and j, N; the number of lattice sites inside the
Voronoi cell of representative site i, and b; ; the number of
nearest-neighbor links intersected by the common facet of
Voronoi cells i and j. For a rigorous derivation of such a
finite-volume scheme on unstructured grids, one may consult
Refs. [26,27]. One nice feature of this coarse-graining
scheme is that Eq. (14) reduces exactly to Eq. (9) as the grid
is refined to the original lattice since, in this case, di‘jzl,
N;=1, and b,-,j: 1. Thus, this formulation allows for seamless
changes in the resolution of the TDDFT calculations, from
the micro- to the mesoscale. The only requirement is that the
average occupation field varies slowly on the scale of the
distance between representative sites. Since the variations in
this field are very sharp and well localized, this is not a
serious limitation.

2. Coarse graining of the elastic equilibrium equations

Since the activities in Eq. (14) also depend on the average
displacement of the atoms in the neighborhood of the repre-
sentative sites, the elastic equilibrium equation [Eq. (11)] is
also required to be coarse grained. The formulation is natu-
rally provided by the quasicontinuum method (QCM) of Tad-
mor and collaborators [28] (see Ref. [29] for a recent review
of the method and its applications). Since its introduction,
the QCM has proven to be very effective in providing a
multiscale description of the micro- and mesoscale elastic
behavior of materials using only interatomic potentials as
input. It was successfully applied to simulations of fracture
[30], nanoindentation [31], and failure of carbon nanotubes
under tension [32], to name only a few examples.

We give here a rapid overview of its most important as-
pects. The first step is to reduce the number of degrees of
freedom required to describe the displacement field. Again
here, we express the average displacement field at every lat-
tice site in terms of the average displacements of the repre-
sentative sites using the Laplace interpolation scheme de-
scribed above. Note that this departs from the standard QCM
procedure, where linear shape functions defined on triangular
elements are used. In our case, it is simpler to use the same
interpolation scheme for both occupations and displace-
ments. Next, we write a coarse-grained energy functional for
the complete system as a function only of the representative
site displacements. For this purpose, we make use of the
so-called nonlocal energy-based formulation of the QCM
[29]. In this formulation, the coarse-grained energy can be
written as a sum over the energy of the representative sites
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N, rep

Etot,QCM — 2 NiEém, (15)
i=1

where E" is the energy of site i evaluated using Eqgs. (7) and
(10) with the Laplace-interpolated average displacements.
The last step is to minimize the coarse-grained energy with
respect to the average displacements of the representative
atoms. This can be carried out using any standard minimiza-
tion method. In this case also, the nonlocal QCM formalism
reduces exactly to the original microscopic model when the
grid is refined to the original lattice; thus, scale-dependent
effects and nonlinearities are fully taken into account.

D. Choice of representative sites

In Sec. IIC1 and II C 2, it was shown how a coarse-
grainable formulation of our model can be obtained, based
on the assumption that a representation of the relevant fields
can be constructed from the values that these fields take on a
subset of all lattice sites (the representative sites). In this
section, the question of how this subset is chosen is ad-
dressed. In principle, choosing a representative set for the
TDDFT equations is an easy task: atomic resolution is re-
quired only in the vicinity of the interphase boundaries,
whereas a coarser grid can be used elsewhere. It turns out
that this strategy is also appropriate for the elastic equilib-
rium equation of the QMC since it adequately captures the
changes in elastic properties between the different phases.
Furthermore, rapid changes in the displacement field also
tend to occur near the interfaces. For example, in the case of
a circular inclusion in an elastically isotropic and homoge-
neous matrix, the radial displacement component increases
linearly with the distance to the center of the inclusion until
the interface is reached, where it abruptly begins to decrease
[33]. Although it is true that a more aggressive optimization
could be achieved by choosing different sets for the TDDFT
and the QCM, the performance gain would probably be more
then offset by the increased complexity of the code. Thus,
only a common representative set will be used here.

To facilitate both creation and management, a few con-
straints on the composition of the representative set are en-
forced. First, only four levels of coarsening are allowed (L
=0,1,2,3); in a region of level L of a D-dimensional lattice,
one out of every 2P sites is included in the representative
set. Second, the representative set forms a semistructured
grid, meaning that the level-L representative set is a subset of
the level-L’ representative set for L>L'. Finally, the local
coarsening level is obtained from the distance d; to the clos-
est interphase boundary by L=min(|d,/d,],3). In the calcula-
tions presented below, we used d,=7a,, where a, is the lat-
tice parameter. The limit imposed on the number of
coarsening levels ensures a smooth and rapid convergence of
the TDDFT and QCM equations. (A very large difference in
the volumes of the representative cells generally causes poor
convergence.)

Because the microstructure evolves in time, the adequacy
of the representative set is checked periodically, and is auto-
matically corrected as necessary. An example of the Voronoi
cells around the representative sites for the case of a single
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FIG. 1. Voronoi cells around the representative sites for a single
inclusion embedded within an otherwise homogeneous matrix in
two dimensions. The contour of the inclusion is shown by the thick
black line.

circular inclusion within a homogeneous matrix in two di-
mensions is show in Fig. 1. One can easily appreciate the
reduction in the number of degrees of freedom resulting from
the multiscale formalism presented here.

E. Implementation details

As a first implementation of this method, we chose to
work in two dimensions. We examine the case of a binary
alloy with vacancies (ABv alloy), but ternary alloys could
just as easily be simulated. The integration of the TDDFT
equations [Eq. (14)] are carried out implicitly using the order
5 backward differentiation formulas of Gear [34]. Every im-
plicit integration step requires the solution of a nonlinear
problem. This is obtained by a Newton-Krylov method [35]
using the stabilized biconjugate gradient algorithm without
preconditioning [36]. Since it is readily available, the exact
Jacobian is used in the non-linear solution. This elaborate
scheme is necessary because the TDDFT equations for our
system are very stiff, so that simpler explicit methods are
limited to extremely small time steps for stability reasons. To
minimize the QMC energy functional Eq. (15) (and hence
the free energy) with respect to the site displacements, we
use the conjugate-gradient algorithm [37] on the QCM forces
using the exact Hessian matrix.

II1. RESULTS
A. Simulation setup

In the following, we present our results for the growth of
isolated inclusions in elastically inhomogeneous systems
with elastic misfit. In all calculations, the inclusion is rich in
B-type atoms, whereas the matrix is rich in A-type atoms. All
results are reported in dimensionless, reduced units, relative
to a stress-free pure A phase: lattice parameter for length
(ap), interaction energy between nearest-neighbors for en-
ergy (e€), and inverse trial frequency for time (7). In those
units, the parameters of the inter-atomic potential Eq. (10)
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were chosen to be: e€,4=€pp=¢€, €4,3=0.7€¢ and o y=0yp
=ay, opg=1.04a,. The stiffnesses k are either kj =k,p
=25€/aj, kpp=100€/a’ for hard inclusions, or kpp=k,p
=25€/ag, kyy=100€/ a(z) for soft inclusions. In order to clearly
distinguish elastic effects from other possible contributions,
we also carried out simulations for an elastically homoge-
neous system without elastic misfit. In this case, we use
opp=d, (and the stiffnesses are arbitrary since they do not
enter the calculation). In all cases, the temperature is T
=0.5€/ kg, which is about half of the critical temperature for
phase separation, and the vacancy concentration is taken to
be 1073

The simulation cell is an hexagon with sides of length
512ay. Fixed boundary conditions are applied to the QCM
equations at the edges of the simulation cell. For the TDDFT
equations, the average occupations at the edges are also
fixed, and either open boundary conditions (the edges act as
sources or drains of occupation probability) for growth simu-
lation or closed boundary conditions (the edges do not act as
sources or drains) for relaxation simulations, are used. A
small inclusion composed of B-type atoms is initially placed
at the center of the cell; the initial inclusion is a circle with a
radius of 10a.

B. Data analysis method

The natural way to study the coarsening behavior of an
inclusion is to obtain the so-called Gibbs-Thomson (GT) re-
lation. This relation links the size of the inclusion with either
its chemical potential or the solute concentration close to its
interface. The coarsening behavior of a collection of inclu-
sions of different sizes can then be inferred from the GT
relation since diffusion will occur from regions of high
chemical potential (or concentration) toward regions of low
chemical potential (or concentration). The system under
study here is a ternary mixture (ABv), and two distinct
chemical potentials can be defined: w, and ug. However, the
information contained in these two quantities can be summa-
rized in the dimensionless quantity (ug—pa)/kgT=Au/kgT.
This can be rationalized as follows. Suppose that the activi-
ties in the matrix are given by A% and A2, while the activi-
ties in the inclusion are given by A7 and A”. If the inclusion
is in equilibrium with the surrounding matrix, we have
A= A% and A®=AB. 1f, on the other hand, the matrix is
slightly supersaturated, we will have A? < A® and, by Eq.
(14), there will be an occupation probability flux of B-type
atoms of magnitude proportional to Aﬁ—Af toward the
inclusion, i.e., the inclusion will grow. However, since the
average occupation within the inclusion is a slowly varying
function of the radius, the occupation probability flux
of B-type atoms must be compensated by an inverse
flux of A-type atoms. In this case, Eq. (14) implies that
AB_ AB= A%~ A% From this, we can infer that the growth
rate of an inclusion is proportional to (A% —.A%)— (A% - A%),
i.e., inside a given matrix, the growth rate of an inclusion is
solely a function of the difference in activity inside the in-
clusion. This also means that, if we now consider an en-
semble of inclusions inside a given matrix, those in which
AP At > AB— A% will shrink to the benefit of those in

m
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which AZ— A%< AB_— A2 Since A*=exp(u®/kgT), the in-
formation about the coarsening behavior of inclusions is also
contained in Aw. In what follows, the GT relation of Au vs
r will thus be used to characterize the equilibrium behavior
of inclusions.

C. Homogeneous system without elastic misfit

In order to clearly isolate elastic effects from others, we
first present the results obtained with our approach for a sys-
tem in which no elastic misfit is present. This will serve as a
basis for comparison to elastically inhomogeneous systems.
We start by discussing the equilibrium properties of the in-
clusions, then investigate how these are affected by growth at
different rates.

1. Equilibrium properties

In the absence of elastic effects, the equilibrium properties
of an isolated inclusion are solely a function of the curvature
of the interface with the matrix. The prefered shape is a
circle at high enough temperature (which is the case here) or
a compact faceted shape otherwise; indeed, this is what we
observe in our TDDFT simulations.

Since the chemical potential inside an inclusion is a func-
tion of interface curvature, Au should follow the well-known
Gibbs-Thomson relation for circular inclusions:

Au(®R) C . Aps,
kyT R kgT~

(16)

where R is the radius, C is a constant related to the interfacial
free energy, and Apu., is the value of Ay inside an infinitely
large inclusion. The results are thus best presented as a so-
called Gibbs-Thomson plot, where Au is plotted against the
reciprocal characteristic length of the inclusion. (In the simu-
lation results, the characteristic length is taken to be the ra-
dius of a circle with the same area as the inclusion and will
be denoted R.). The normal behavior of Au then appears as
a straight line. Figure 2 shows the GT relation obtained from
a simulation carried out at very low supersaturation (Ac?
=1%, where Ac? is the excess concentration of solute atoms
in the matrix relative to the concentration at phase coexist-
ence). The data reproduce the expected 1/R dependence of
the chemical potentials and thus follows the GT relation.

In Secs. III C 2—4, the dynamical properties of the inclu-
sions are investigated. More specifically, we wish to assess
the stability of the circular shape against growth. We also
study the effect of growth on the chemical potentials of the
inclusions and infer the consequences on the coarsening be-
havior. To address these questions, different growth rates
were imposed to initially circular inclusions. The level of
supersaturation of the matrix was varied from directly above
the spinodal limit (where new inclusions would spontane-
ously appear in the matrix) to the binodal limit (where the
growth rate vanishes for very large inclusions), thus covering
a large portion of physically possible growth rates. At the
temperature where the calculations were carried out, the
spinodal limit corresponds to a maximal supersaturation Ac?
of about 10%. We begin by exploring the stability of the
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FIG. 2. Dynamical Gibbs-Thomson relations for homogeneous
inclusions: circles: AcB=1% (quasi-static growth); squares:
AcP=4%; diamonds: Ac®=10%; continuous line: fit to Eq. (16) for
AcP=1%.

equilibrium shape against growth and deformation.

2. Morphological stability

A stroboscopic view of the evolution of the inclusion is
provided in Fig. 3 for a very high supersaturation (Ac®
=10%). Initially, the inclusion maintains its equilibrium cir-
cular shape. As the size increases, the inclusion adopts an
increasingly hexagonal shape. Eventually, the “facets” of this
hexagon become concave, leading to the formation of
pointed tips at the vertices. Near the end of the simulation,
the tips split and continue to grow while small bulges appear
in their vicinity. The “facets” do not align in directions of
low interface energy, so that the anisotropy of the interfacial
energy (automatically present because of the underlying
symetry of the lattice) is not the primary cause for the sixfold
symmetry.

Growth instabilities are well known and commonly ob-
served, both in simulations and in experiments [5-9,38]. The
theoretical study of this phenomena was pioneered by Mul-

200k ‘ ' R
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y (units of aO)
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T
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FIG. 3. Evolution of a growing homogeneous inclusion for
AcB=10% over 1.5 10'?7,
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lins and Sekerka (MS) [5], who developed a model to ex-
plain shape instabilities in diffusion-controlled systems by
studying the dynamics of infinitesimal perturbations around
the equilibrium state. The evolution of these perturbations is
governed by two opposing forces, namely, capillarity,
which favors the decay of the perturbations, and the so-called
point effect of diffusion, which promotes their growth.
The point effect is related to the bunching of isoconcentra-
tion lines above protuberances on a growing interface and to
their rarefaction above depressions. The net result is the fo-
cusing of diffusion fluxes away from the depressions and
toward the protuberances, thus increasing the amplitude of
the perturbation.

In the case of a perturbed circular inclusion, the distance
between the center of the inclusion and a given point on its
interface with the matrix can be decomposed into a sum of
contributions  from  different modes, 1ie., r(#)=R
+2,6, cos(16+ ¢;), with & the amplitude of mode / and ¢ its
associated phase. MS showed that the fractional rate of
increase (FRI) of the amplitude of a mode is given by:

&) [ Rc(n][ R*]-l
—=(-D|1=-——||1-— s 17
o (I-1) . - (17)

with R the thermodynamical critical radius of an inclusion
at the imposed supersaturation and R.()=[(1/2)(I+1)(I+2)
+1]R" the critical radius for the amplification of mode L.
[Below R.(I) mode I decays, whereas above R.(I) it grows.]
The sign of the FRI indicates whether a perturbation of the
corresponding mode grows (+) or decreases (—). Further-
more, a FRI between 0 and 1 indicates that, while the ampli-
tude of the mode grows, it does so less rapidly than the
radius of the inclusion, so that the equilibrium shape will be
asymptotically restored. In constast, a FRI higher than 1
indicates that the relative contribution of the mode to the
overall shape increases with time.

Two important conclusions can be inferred from Eq. (17).
First, the radius at which a mode becomes unstable increases
rapidly with its order. This means that only low-order modes
are expected to be relevant for the range of sizes probed here.
Second, the higher the order of a mode, the higher its
asymptotic FRI is [the FRI tends to /-1 for R>R_(I)].

It is useful to recall that the MS theory is linear in that it
assumes vanishingly small perturbation amplitudes, so that
interactions between modes can be neglected. Thus, in order
to compare the simulation results to the theory, we need to
study configurations where only one mode is significantly
excited. To achieve this, simulations were initialized with
inclusions whose shape is perturbed by either mode 2 or
mode 3 [8,(r=0)=1 or &(t=0)=1]. Note that, even in this
case, nonlinear effects cannot be excluded because other
modes will progressively get excited during the evolution
of the system. We will return to the case of the initially
unperturbed inclusion below.

The FRI inferred from these simulations are reported in
Fig. 4 for different levels of supersaturation. The agreement
between the data and the predictions of the model is reason-
able. The initial increase of the FRIs close to R. and their
asymptotic value are well reproduced.
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FIG. 4. Fractional rate of increase of modes 2 and 3 for per-
turbed homogeneous inclusions: circles: AcP=10%:; squares: AcB
=7%; diamonds: Ac®=3%; continuous lines: Eq. (17) with R
=1.1a, for 1=2 and [=3; dashed lines: Eq. (17) with R"=1.8q, for
=2 and [=3; dotted line: Eq. (17) with R"=2.5a, for 1=2. The
empty symbols correspond to /=2 and the filled ones to /=3.

However, discrepancy with the theory appears as pertur-
bations develop further. As mentioned earlier, this is due to
interactions between modes. The most important conse-
quence is the excitation of higher-order harmonics of
strongly excited modes. This can be observed in Fig. 5,
where the FRIs of a few modes for a simulation with a strong
initial perturbation of mode 3 [8(r=0)=2q,] are reported.
The results show that the FRI of mode 6 reaches more than
twice the expected value because of interactions with mode
3. We have carried out a series of simulations to confirm that
this excess FRI is indeed directly correlated with &(r=0).
The FRIs of mode 3 and 6 then gradually decrease. Both the
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FIG. 5. Fractional rate of increase for homogeneous inclusions
with &(t=0)=2a, for Ac®=10%: circles: mode 2; Squares: mode
3; diamonds: mode 6; continuous line: Eq. (17) with R*=1.1a, for
[=2; dashed line: Eq. (17) with R"=1.1a, for 1=3; dotted line: Eq.
(17) with R"=1.1a, for I=6.

PHYSICAL REVIEW E 74, 031609 (2006)

0.04 T T T T T T T T
®
® D ¢
Q
D 0 ' X

0.03 B @& P o QP D

~
= ¢
< €) " d ®
qs @ ¢ o) 0 b 4
- ¢ @ o
) O ¢
~—
= 0.02F
=} ® 0
5 @ O P
© > o P 4 ® ¢ 5 D ¢
7} Y ® (o @ 0 @
¢ ¥ ¢ ¢
0.01 ® O O® .
B o o O ¢
bP O o ®l o ¢
© o O )
o ¢
Y & @
& & | O & d
01 L I L | V) I L [ O L
5 16 17 18 19 20

Req (units of a,)

FIG. 6. Amplitude of mode 6 for a homogeneous inclusion at
AcB=0.1%.

excitation of higher-order harmonics and the inhibition of
large-amplitude modes are known consequences of nonlin-
earities [7]. The other commonly observed effect is the inhi-
bition of incommensurate modes. This effect can also be ob-
served in Fig. 5. In this case, the growth of mode 2 is
strongly inhibited by the large amplitude of mode 3. This
process is so efficient that mode 2 actually becomes stable
around R=125a, (when the FRI becomes negative).

3. Excitation of perturbations

Up to now, we have focused on the amplification of per-
turbations. Of course, they need to be created before they can
be amplified. In real systems, the MS instability feeds on
random thermal fluctuations while in deterministic and iso-
tropic numerical models, the only source of instability is nu-
merical noise (roundoff or integration errors, for example).
In the present case, the microscopic resolution causes the
isotropy to be broken. Indeed, the inclusion grows on a dis-
crete lattice with sixfold rotational symmetry. This causes
angular variations of various physical quantities which can
couple with the inclusion shape and induce shape modula-
tions. This phenomenon can be observed in Fig. 6, where the
amplitude of mode 6 for an initially circular inclusion at very
low supersaturation is reported. Below R.(6), the amplitude
of this mode indeed exhibits an oscillatory behavior of pe-
riod ay. Note that in the range of radii of Fig. 6, the ampli-
tudes of the other modes are 1 or 2 orders of magnitude
below that of mode 6. Furthermore, the phase of mode 6
relative to the underlying lattice is constant from one simu-
lation to another, which supports the idea of an excitation
through interactions with the lattice. Other modes can then
be excited either by direct coupling with mode 6 or by inter-
action of the slightly perturbed shape with the lattice, in ad-
dition to numerical noise. This demonstrates the power of
our approach for studying phenomena that emerge from the
existence of fundamental symmetries or length scales.

The above discussion enables us to understand the evolu-
tion of initially unperturbed shapes, such as that shown in
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Fig. 3. If we assume that the primary mode-excitation pro-
cess is noise, the MS theory predicts that different shapes
should be observed as a function of the supersaturation: low-
index modes should tend to dominate at low supersatura-
tions, while high-index modes prevail at higher supersatura-
tion. However, this is not what we observe: mode 6
invariably emerges as the leading mode when the radius of
the inclusion exceeds R.(6). Even as the supersaturation in-
creases, higher-index modes with asymptotically larger FRIs
are not able to outgrow mode 6 in the range of sizes probed
here. This shows that the preferential excitation of mode 6 by
the lattice is the cause of its dominance in the shape of ini-
tially circular inclusions. We also observe that the excitation
of other modes is extremely sensitive to noise: indeed, their
relative contribution to the shape of the inclusion varies from
one simulation to the other even for identical initial condi-
tions (modulo the inevitable numerical roundoff errors).

Another factor related to the anisotropy of the lattice con-
tributes to the observed dominance of mode 6: the anisotropy
of the mass transport and interface kinetics. Indeed, aniso-
tropic kinetics are known to induce faceting [9] and the for-
mation of corners [7,8] and tips; it is also known to delay the
well-known tip splitting instability, as clearly shown by
Brush and Sekerka [7]. These results indicate that in com-
pletely isotropic systems, even very blunt tips split sponta-
neously, while the introduction of kinetic anisotropy gradu-
ally stabilizes them. By comparing Fig. 3 to the
morphologies reported in Ref. [7], it is clear that such
mechanisms operate in our simulations. However, the quan-
titative agreement between the measured FRIs and the pre-
dictions of the isotropic MS model indicates that, at least
below R=100q, (where nonlinear effects are small), the an-
isotropy of the kinetic coefficients is not the dominant factor
in the growth of the different modes.

These results highlight another advantage of our approach
compared to MMS: the anisotropy of the kinetics and of the
energetics is automatically taken into account because of the
microscopic formulation of our model. This makes the task
of identifying and parametrizing these anisotropies a priori
unnecessary.

4. Dynamical corrections to the GT relation

Having analyzed the role of dynamical effects on the to-
pology of the inclusions, we now turn to a discussion of their
impact on the chemical potential and, hence, on their coars-
ening behavior. Figure 2 shows that finite growth rates can
have a significant effect on the GT relation of the inclusions.
Although the general behavior is preserved, the slope of the
GT curve shows a clear rate dependence. This, in turn, im-
plies that the composition of the inclusion is a function of the
growth rate. This dependence is a consequence of the so-
called solute trapping effect, which is also observed in such
contexts as rapid solidification in alloys [39,40] and grain
coarsening in polycrystalline materials [41], for example (see
Ref. [42] for a recent review). The solute trapping effect can
be understood intuitively using a simple argument [40]: un-
der growth conditions, a concentration gradient forms in
front of the growing interface; since there is a free energy
cost associated with this concentration gradient, the equilib-
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rium partition of solute atoms across the interface can be
ignored in favor of smaller gradients. By using this assump-
tion to solve the diffusion equation for a system with an
interface traveling at constant velocity, Langer and Sekerka
[43] showed that the solute concentration in the growing
phase should vary linearly with the interface velocity.

The topology of the inclusions also affects the GT relation
through a slight downward curvature at large size (see inset
to Fig. 2). Clearly, this contribution could become quite sig-
nificant at larger sizes and for more pronounced shape per-
turbations, but for the range of sizes studied here, it is very
small.

Although the absolute value of the dynamically induced
chemical potential shift (as measured by the distance be-
tween the quasistatic GT curve and the dynamical one) may
seem important, it has to be compared to the driving force
necessary to induce such a shift, i.e., for the shift to be really
significant, it has to be comparable to the driving force
(Au/kgT at the boundary of the simulation cell minus
Au/kgT in the inclusion) or else its impact on growth dy-
namics will be negligible. For Ac®=10%, the driving force is
~0.7 while the shifts are of the order of 0.01 or smaller.
Even for Ac®=4% the driving force is still large (~0.6).
Thus, the dynamically induced shifts are too small to signifi-
cantly affect the coarsening behavior of the inclusions. For
this reason, we will not try to quantify precisely the solute
trapping process nor the impact of the shape perturbation on
the chemical potentials in the present study.

D. Hard inclusions
1. Equilibrium properties

Having studied the reference homogeneous system, we
now turn to the case of hard inclusions. For isotropic elastic-
ity, Eshelby [44] showed that a circular inclusion has a
lower elastic energy than an ellipse. Because, at high
enough temperature, the interface-energy minimizing shape
is also a circle, hard inclusions have a circular shape inde-
pendent of their size. In quasistatic growth simulations, we
also observe quasicircular shapes for all sizes investigated
(10ay<R<100a,). However, we observe a slight departure
from the circular shape through the formation of “facets.”
These are not facets in the strict thermodynamical sense, but
shape modulations resulting from a tendency of the interface
to align with atomic planes which have low interface ener-
gies. Note that this phenomena is not present in homoge-
neous inclusions, where the amplitude of mode 6 oscillates
but does not to grow until R.(6) is exceeded (c.f. Fig. 6).
This behavior can be explained by a strain-induced change of
the orientational dependence of the interfacial free energy.
This effect, and its dynamical consequences, will be de-
scribed elsewhere. The small magnitude of this (nearly rate-
independent) shape variation can be appreciated from Fig. 7:
the amplitude of mode 6 remains below 0.5% of the radius of
the inclusion in the range studied. Also, the amplitude of
mode 6 is not a linear function of the radius, i.e., large in-
clusions are not scaled-up versions of small ones. This may
be a consequence of the interface contributions to the elastic
energy which are not negligible for inclusions below a few
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FIG. 7. Amplitude of various perturbation modes as a function
of size for hard growing inclusions: dotted line: mode 6 for
AcB=10%; dashed line: mode 6 for Ac®=6%: thin continuous lines:
modes 2—10 excluding 6 for AcB=10%.

tens of nanometers [45]. This highlights another strength of
our model: because of its microscopic formulation, scale-
dependent effects are automatically taken into account.

In the continuum limit, the strain inside a circular inclu-
sion is independent of its size [33]. Thus, the normal Gibbs-
Thomson behavior should be observed for hard inclusions
(modulo the small contributions from facet formation). This
is indeed the case, as shown in Fig. 8 for Ac®=1% (smaller
supersaturations give similar results). The effect of the elas-
ticity is thus to modify the values of C and Apu.,, in agree-
ment with the sharp-interface results of Thornton and col-
laborators [46]. In addition, the figure shows rather strong
oscillations in the chemical potential, with a period of
0.866a,. These oscillations are related to variations in the
energy required to incorporate an additional atom along the
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FIG. 8. Dynamical Gibbs-Thomson relations for hard inclu-
sions: circles: AcB=1% (quasistatic growth); squares: AcB=4%;
diamonds: AcB=10%; continuous line: fit to Eq. (16) for
AcB=1%.
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FIG. 9. Evolution of a growing hard inclusion for Acf=10%
over 1 X 10'27,. The dashed line represents a perfectly circular in-
clusion with Req=100a,.

interface. Indeed, because the inclusion’s shape is not per-
fectly isotropic, the elastic energy cost for the addition of a B
atom varies as a function of position along the interface.
During growth, the available sites will be filled in order of
increasing energy; since the chemical potential corresponds
to the free energy change on adding a B atom at the interface,
it will gradually increase until new low-energy sites become
available, and the cycle repeats itself. A detailed analysis of
this phenomenon, and its importance for coarsening, will be
reported elsewhere [47].

2. Morphological stability

As expected, elasticity does not induce qualitative
changes in the equilibrium properties of hard inclusions
compared to homogeneous inclusions. However, dynamical
properties may be affected by elasticity. To clarify these mat-
ters, simulations of growth were here again carried out.

Figure 9 shows the evolution of the shape of a hard inclu-
sion during growth. Compared to the homogeneous inclu-
sion, the (quasi)circular hard inclusion appears to be very
stable: the formation of concave interfaces or tips is inhibited
even at very large supersaturation. The facets mentioned ear-
lier become more evident when comparing to a perfectly
circular inclusion (dashed line). The small depressions ap-
pear when the orientation of the interface is nearly parallel to
a low-interface energy direction (occuring at odd multiples
of /6 in the present calculations). We may quantify these
morphological changes using a modal decomposition; the
results are reported in Fig. 7.

We find that a perturbation along mode number 6 indeed
develops as the size of the inclusion increases. The data also
indicates that modes other than 6 are completely frozen for
the range of sizes examined here: small variations can be
observed, but no amplification occurs. Since not even the
low-index modes are allowed to grow (indicating high criti-
cal radii), it would be rather surprising that mode 6 could be
dynamically amplified. In fact, our simulations show that the
amplitude of mode 6 does not depend on supersaturation in
the range of supersurations probed here (see Fig. 7). Hence,
the growth of this mode is probably, rather, a manifestation
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of a change in the equilibrium shape of the inclusion, as
mentioned above. These results indicate that elasticity leads
to a very effective stabilization of circular inclusions in the
size domain investigated.

This stabilization of the inclusion against perturbations
was predicted by Leo and Sekerka [6] who extended the
model of Mullins and Sekerka [5] to include the effects of
elasticity. Qualitatively, they found that elasticity stabilizes
hard inclusions by decreasing the growth rate of perturba-
tions, by increasing the critical radius for mode amplifica-
tion, and by decreasing the wavelength of the fastest growing
perturbation. Quantitatively, this can be taken into account
by modifying the FRI of the amplitude of perturbations com-
pared to the elastically homogeneous case, which becomes
[c.f. Eq. (17)]

4

5 [+1g%() . R R |
—f:(z-1){1——g—()RM1——“H1——] :
R -1 2y R R

R
(18)

where the critical radius for mode amplification is given by
[30+2)(+1)+1]R

I+1g%)
LAY U
-1 2y

R.() = , (19)

with g¢l(I) a factor related to the elastic properties of the
material [g®(/)=0 for homogeneous systems] and 7 is the
interface energy per unit length. From Egs. (18) and (19),
one can see that a positive value of g°(I) (corresponding to
hard inclusions) results in a decrease of the asymptotic FRI
of every mode and an increase of the critical radius for mode
amplification, R.(I), in agreement with our observations. In
order to verify if our model quantitatively reproduces the
predictions of Leo and Sekerka [6], we studied the decay of
initially imposed perturbations similar to the case of homo-
geneous inclusions. Since the decay of perturbations is very
fast for small sizes (except for low-index modes and high
supersaturations), only the FRI of mode 2 at high supersatu-
ration could be computed reliably. The results are presented
in Fig. 10. By comparing to Fig. 4, one clearly observes the
strong decrease of the FRI induced by elasticity, with an
asymptotic value close to O already at a supersaturation of
7%. A reasonable fit to the data can be obtained using
g%(1)/2y=0.16 and the values of R* from homogeneous in-
clusions. Although qualitative agreement can be claimed, it
is difficult to give a quantitative assessment based only on
the limited data available. Nevertheless, the general conclu-
sions of Leo and Sekerka [6] concerning the effect of
elasticity are certainly verified.

3. Dynamical corrections to the GT relation

Even if dynamical effects do not induce shape changes in
hard inclusions under the conditions studied here, the GT
relations turn out to be strongly affected by growth, as can be
appreciated from Fig. 8 where the GT curve is plotted for
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FIG. 10. Fractional rate of increase of mode 2 for hard inclu-
sions: circles: AcB=10%; squares: AcB=7%; continuous line: Eq.
(18) with g(1)/2y=0.16 and R"=1.1a,; dashed line: Eq. (18) with
g% (1)/2y=0.16 and R"=1.8a,.

different levels of supersaturation. The results show that the
normal GT behavior is observed during rapid growth. How-
ever, large shifts in the chemical potential as a function of
supersaturation are measured. These are once again caused
by solute trapping. The large value of these shifts compared
to the homogeneous case is related to the strong coupling
between strain and occupation probability fields, i.e.,
changes in the occupation probabilities induces changes in
the strain field, which, in turn, affect the chemical potentials,
causing further changes in the occupation probabilities, etc.
Although the shifts are larger here than in the homogeneous
case, they are still small compared to the driving force (0.04
vs ~0.9 at Ac=10% and 0.02 vs ~0.64 at Ac®=4%), so,
once again, the dynamical corrections are not expected to
significantly affect the coarsening behavior of hard
inclusions.

E. Soft inclusions

The case of soft inclusions is much more complex. In-
deed, it is known since Eshelby [44] that a soft circular in-
clusion possesses higher elastic energy than an elliptical one.
However, the interfacial component of the free energy favors
the more compact circular shape. Thus, one would expect a
transition from an interface-dominated regime with circular
inclusions (at small sizes) to an elastic-dominated regime
with ellipsoidal inclusions (at large sizes). This transition
was studied using very general symmetry considerations by
Johnson and Cahn [2] who showed that, in two dimensions,
a second-order transition in the aspect ratio of inclusions
occurs as their size increases. In the following, the conse-
quences of this shape transition on the equilibrium and
dynamical properties of the inclusions will be explored.

1. Equilibrium properties

For reasons that will become clear below, growth simula-
tions cannot be used to probe the equilibrium properties of
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FIG. 11. Equilibrium Gibbs-Thomson relation for soft inclu-
sions. Left inset: equilibrium shape of the inclusion for R.q=23ay;
right inset: equilibrium shape of the inclusion for rey=13ay.

soft inclusions. Instead, a sequence of relaxations for inclu-
sions of different sizes with closed boundary conditions was
performed. Using this method, the expected shape transition
was indeed observed, as can be seen in the insets of Fig. 11.
As predicted, there is a maximum size over which circular
inclusions are not stable: they adopt instead increasingly ec-
centric elliptical shapes. Furthermore, the onset of this shape
transition is very abrupt, in agreement with the predictions of
Johnson and Cahn [2].

Figure 11 also provides, through a GT plot, a quantitative
view of the effect of the transition on the thermodynamic
properties of the inclusions. First, the transition is clearly
marked by a discontinuity in the slope at R‘1=0.59a51 (R
= 17ay). Second, the change in slope is very significant—a
factor of about 2.5. This is consistent with the results of Li et
al. [4], where the effect of the shape transition induced by
anisotropic and inhomogeneous elasticity was studied. How-
ever, the magnitude of the change observed here is larger
than reported in their study, probably due to the larger elastic
inhomogeneity used here. The consequences of this change
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-50 25 0 25 50
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FIG. 12. Evolution of a growing soft inclusion for Ac®=0.1%
over 5X 10'%7,.
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FIG. 13. Evolution of a growing soft inclusion for Ac=0.5%
over 3 X 10"%7,.

of slope on the coarsening behavior of a collection of soft
inclusions will be discussed in Sec. IV.

2. Morphological stability

The presence of a shape transition during growth opens
up the possibility of a complex behavior because metastable
states, where both composition and shape are out of equilib-
rium, are now accessible. Since shape relaxation can be quite
slow, the behavior of the inclusions is likely to be affected by
dynamical effects over long periods of time. To test this hy-
pothesis, simulations for various growth rates were carried
out.

On the basis of mere visual inspection, it is already clear
that elasticity has a dramatic impact on the shape adopted by
the inclusions during growth. Examples of such shapes are
presented in Figs. 12-14 for different values of the super-
saturation. First, at very low supersaturation (0.1%), Fig. 12
shows that the equilibrium shape is preserved during growth:
circles at small sizes, ellipses at larger sizes. In the latter
regime, the major axis grows much more rapidly than the
minor axis, leading to increasingly eccentric shapes. Second,
for a slightly higher, but still very low supersaturation by
homogeneous or hard inclusion standards (0.5%), the evolu-
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FIG. 14. Evolution of a growing soft inclusion for Acf=10%
over 7x 10!z,
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FIG. 15. Amplitude of various perturbation modes as a function
of inclusion size for a soft growing inclusions with Acf=0.5%:
circles: mode 2; squares: mode 3; diamonds: mode 4; triangles:
mode 6; X: mode 7; crosses: mode 9.

tion of the system is completely different. Instead of a shape
transition from circle to ellipse, a transition toward a three-
fold symmetric shape is observed, as shown in Fig. 13. Here,
growth proceeds essentially from the tips of the inclusion.
The important point is that this nonequilibrium shape is
stable in time, i.e., it does not decay toward an ellipse as long
as the flux is maintained. Surprisingly, only a very small
supersaturation is required to achieve this. Third, for high
supersaturations, Fig. 14 shows that sixfold symmetry is pre-
ferred. Once again, this shape is stable in time and growth
occurs almost exclusively from the tips. It is interesting to
note that we did not observe any tip-splitting instability in
soft inclusions, unlike in the case of homogeneous inclu-
sions, even at very high growth rates. Finally, for intermedi-
ate supersaturations, we also observed shapes with four or
five tips. Note that, although there is a clear correlation be-
tween supersaturation and morphology, the relation between
the two is not absolute: we observed that more than one type
of inclusion may form from the same initial conditions.

The formation of shapes of increasingly higher order as
supersaturation increases can be understood using the
Mullins-Sekerka theory. Indeed, it predicts that the order of
the fastest growing mode is proportional to R*"? and,
hence, to the supersaturation. Thus, as the supersaturation
increases, the leading mode, and therefore, the shape of the
inclusion, should be of increasingly higher order. For homo-
geneous inclusions, this tendency is overwhelmed by the
preferential excitation of mode 6. For soft inclusions, it
seems that other modes are able to overcome this disadvan-
tage. An explanation for this will be offered later on in this
section.

A quantitative appreciation of the development of the
shape can be obtained from a modal analysis. This is re-
ported in Fig. 15 for the system shown in Fig. 13. The first
mode to be amplified significantly is mode 3; note the very
high rate at which it develops. Very soon after, two of its
harmonics (6 and 9) are also strongly amplified through in-
teractions with the leading mode. Concomitantly, we observe
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FIG. 16. Fractional rate of increase of mode 3 for the soft in-
clusions depicted in Fig. 13 (Ac=0.5%): circles: simulation re-
sults; continuous line Eq. (18) with g®(1)/2y=-0.26 and R*=17a,,.

that the growth of other modes is either slowed down or
reversed.

A closer look at the FRIs indicates that three regimes are
in fact present. This is illustrated in Fig. 16 for mode 3 (simi-
lar results are obtained for other modes). The FRI initially
increases rapidly to reach extremely high values—the
asymptotic FRI for mode 3 is 2 in homogeneous systems
[c.f. Eq. (17)]. This increase is followed by a very rapid
decrease, after which the FRI finally settles at a low value of
~1.5. The extremely high values of the FRI observed in the
early stages of the simulation explain the sensitivity of the
results to noise that was noted above: the least perturbation is
exponentially amplified so that the balance between the dif-
ferent modes can easily be disrupted. These results also sug-
gest that the rapid change of the FRI observed around
R=30 marks a change in perturbation growth mode. This
possibility will be explored in Sec. II E 3.

When the amplitudes of the perturbations are sufficiently
small that nonlinearities can be neglected, the behavior of the
shape instability should be correctly described by the Leo-
Sekerka generalization of the Mullins-Sekerka theory. In the
case of soft inclusions, Egs. (18) and (19) are still valid, but
the predicted value of g is now negative. The effect of
elasticity is therefore to increase the asymptotic FRIs and to
decrease the critical radii compared to the homogeneous
case, thus strongly favoring shape instabilities. Furthermore,
the asymptotic FRI is now proportional to R”, so that very
large values are possible even at small supersaturations. This
explains why the relative importance of the preferential ex-
citation of mode 6 is now reduced: very small excitations of
other modes can now be amplified very efficiently even be-
fore R.(6) is reached. In order to verify if the Leo-Sekerka
theory adequately describes the shape evolution of the inclu-
sions, growth simulations were carried out for inclusions ini-
tially perturbed by either mode 2 or 3. The FRI inferred from
these simulations are reported in Figs. 17 and 18.

First, the expected increase of the FRI for mode 2 can
clearly be seen in Fig. 17 [the asymptotic R.,— % value of
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FIG. 17. Fractional rate of increase of mode 2 for soft inclu-
sions: circles: Ac?=9%; squares: Ac®?=6%; diamonds: AcB=3%;
continuous line: Eq. (18) with g°(1)/2y=-0.13 and R"=1.6ay;
dashed line: Eq. (18) with g(/)/2y=—-0.13 and R"=2.5a,; dotted
line: Eq. (18) with g®(/)/2y=-0.13 and R*=4.5a,. All lines are
shifted upward by 0.2.

the FRI in the homogeneous case is unity for this mode, c.f.
Eq. (17)]. Second, our results are in excellent agreement with
the Leo-Sekerka model for g(2)/2y=-0.13 and appropriate
values of R". The value of g°(l)/27y can be very precisely
determined here because it fixes the radius at which the FRI
for different values of R* cross. Note that in order to get
agreement with the simulations results, the theoretical FRI
curves had to be shifted upward by 0.2 (see below).

A similar analysis was performed for mode 3 and the
results are reported in Fig. 18. Once again, large enhance-
ments of the FRI (already a factor of two at small sizes and

4 T T T T
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FIG. 18. Fractional rate of increase of mode 3 for soft inclu-
sions: circles: AcB=9%; squares: Ac=6%; diamonds: AcB=3%;
continuous line: Eq. (18) with g°(1)/2y=-0.26 and R*=1.6ay;
dashed line: Eq. (18) with g®(1)/2y=-0.26 and R"=2.54,; dotted
line: Eq. (18) with g(1)/2y=—0.26 and R"=4.5a,. All lines are
shifted upward by 0.2.
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FIG. 19. Relaxation of a circular soft inclusion with R.,=40a,.
Insets: shape of the inclusion at different moments during the relax-
ation process.

moderate supersaturation) are observed. Good agreement
between simulation results and theoretical predictions is
achieved with g(3)/2y=-0.26 and the values of R* ob-
tained from mode 2, and by shifting the theoretical curves
upward by 0.2. Thus, as in the hard inclusion case, the Leo-
Sekerka description of growth instabilities provides an ad-
equate account of the simulation results for small inclusions.

The shift of the theoretical FRI curve, necessary to match
the simulation data, indicates that another factor besides the
Mullins-Sekerka instability contributes to the growth of
shape perturbations. One possibility is that the quasistatic
relaxation from a circular inclusion larger than the critical
size to an elliptic inclusion involves the growth of sinusoidal
perturbations, similar to those occurring via the Mullins-
Sekerka mechanism, hence, adding a static contribution to
the FRI. In order to investigate this hypothesis, we studied
the relaxation of a circular inclusion with R=40aq, (for which
the equilibrium shape is an ellipse) with closed boundary
conditions, i.e., without any diffusion fluxes in or out of the
cell. The evolution of the shape of the inclusion and of its
distance to equilibrium (as measured by the difference be-
tween its chemical potentials and those of an equilibrium
inclusion of the same size) is reported in Fig. 19. This figure
shows that the relaxation of a circular inclusion towards its
equilibrium shape indeed occurs by a succession of transi-
tions, from high- to low-symmetry structures, and not by a
continuous and smooth deformation of the circle to an el-
lipse. This can be seen both in the insets, where the inclusion
shape is reported, and in the main graph, where the evolution
of Au is presented. Simulations show that the order of the
dominant quasistatic shape perturbation increases with size,
from 2 close to the equilibrium transition point to 12 for
large inclusions. The quasistatic relaxation pathway thus pro-
vides an explanation for the unexpectedly large FRI and acts
so as to further promote the formation of high-order symmet-
ric shapes. Note that very similar relaxation patterns have
been observed using conventional microscopic methods
[18,19]. This further shows that our model adequatly retains
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FIG. 20. Activity map of B atoms for a soft inclusion for
AcB=0.5%.

the essential physics from the discrete formulation.

3. Late stages of perturbation growth

The above discussion suggests that the evolution of the
shape of the inclusions should, for the most part, be gov-
erned by the Mullins-Sekerka instability. Comparing the pre-
dictions of the model to the evolution of mode 3 presented in
Fig. 16, we see that good agreement is achieved here only for
inclusions smaller than R=30qa,. For larger sizes, the FRI
sharply decreases in contradiction with the behavior pre-
dicted by this model. A possible explanation is that the
Mullins-Sekerka theory breaks down because of nonlinear
interactions between modes similar to that observed in Fig.
5. However, the amplitude of mode 3 is roughly 3% of the
radius of the inclusion at R=30q,, compared to 10 to 15% in
the homogeneous case, so that, while nonlinear effect are
probably affecting the results, it is unlikely that they could
induce change in behavior of such large extent.

The nature of the new regime can be inferred from Fig.
13, which shows that growth occurs exclusively at the tips in
the later stage of evolution, while the regions close to the
core are frozen. The signature of this regime can indeed be
identified by examining the activity maps of the system dur-
ing growth, an example of which is presented in Fig. 20 for
B atoms. The data show that the activity is relatively uniform
inside the inclusion, except at the end of the tips where
minima form. Since diffusion of B atoms occurs from re-
gions of high activity to regions of low activity, these
minima yield funnels in their neighborhood, channeling sol-
ute atoms toward the tips. This channeling effect implies that
regions close to the core of the inclusion receive less solute
atoms, in agreement with the observations. Figure 16 can
thus be understood as follows: (i) in the early stages of
growth, perturbations grow by a Mullins-Sekerka mecha-
nism; (ii) once small tips are formed, the channeling effect
set in, causing a gradual shift toward a more directed growth
mode and the inhibition of the mode instability owing to the
increasingly anisotropic solute diffusion; during this interme-
diate regime, the FRIs decrease; and (iii) finally, at larger
sizes, channeling is so efficient that few solute atoms reach
the core of the inclusions, thus strongly suppressing mode
instability. This also explains why tip splitting is not ob-
served as could have been expected at an unstable interface.
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FIG. 21. Elastic energy map of B atoms for a pure-B soft
inclusion.

Since this directed growth regime is not observed for ho-
mogeneous inclusions, it is probably a by-product of elastic-
ity. In order to evaluate this possibility, we carried out the
elastic relaxation of a pure-B inclusion of similar shape as
the inclusion shown in Fig. 20 within a pure-A matrix. This
enables us to obtain the local elastic energies everywhere in
the inclusion. These results are reported in Fig. 21. The simi-
larity with Fig. 20 is striking: activity and elastic energy
minima at the tips of the inclusion coincide, showing that the
tips grow because they correspond to elastically favored
regions where the strain energy is small.

4. Dynamical corrections to the GT relation

Having analyzed the shape evolution occurring during the
growth of soft inclusions, we now turn to the study of the
consequences of these morphological changes on the coars-
ening behavior of the inclusions.

The GT curves for the inclusions pictured in Figs. 12-14
are reported in Fig. 22. Considering first the smallest super-
saturation (Ac®=0.1%), we see that Au/kgT follows closely
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FIG. 22. Dynamical Gibbs-Thomson relations for initially cir-
cular soft inclusions: circles: Ac®=0.1%; squares: Ac?=0.5%; dia-
monds: AcB=10%. The continuous and dashed lines are fits to the
two sections of the equilibrium Gibbs-Thomson relation (c.f. Fig.
11).
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the equilibrium behavior at small sizes. Furthermore, the
transition toward the elliptic shape occurs near the
equilibrium transition point (Re_; =0.59ay", Rey=17a,). How-
ever, a small but significant deviation from the equilibrium
curve is observed as the size increases. This deviation does
not resorb but, on the contrary, increases steadily, signaling
the existence of persistent deviations from the equilibrium
shape, even at this very low supersaturation.

This is further illustrated by the analysis of the GT curve
of the three-branched inclusion depicted in Fig. 13, which
corresponds to a slightly higher supersaturation
(AcB=0.5%). Now the transition away from the circular
shape begins at about R™'=0.33a;' (R=33a,). At this point,
the inclusion is already strongly out of equilibrium since it
followed the circular branch of the equilibrium GT relation
deeply into the elliptic region. The GT curve then drops
abruptly. This abrupt change corresponds to the beginning of
the very fast amplification of mode 3. A similar behavior is
observed for the highest supersaturation (Ac®=10%) except
that the shape transition now occurs at a very large radius
(around R=50a,). The slope of the GT curves are also dif-
ferent in the large inclusion region, showing that this mea-
surement is very sensitive to the topology of the inclusions.
This dynamical GT relation enables us to estimate the extent
of the dynamical corrections on the coarsening behavior of
the inclusion. The driving forces imposed by the supersatu-
rated matrix are approximately 0.05, 0.13, and 0.67 for
Ac?=0.1% ,0.5%, and 10%, respectively, compared to dy-
namical corrections of about 0.01-0.03. These results indi-
cate that dynamical effects can significantly alter the coars-
ening behavior of soft inclusions, particularly at low
supersaturation.

The impact of the morphology on the growth dynamics
can be quantified more precisely by taking advantage of the
sensitivity of the growth process to initial conditions. Using
this fact, it is possible to select the number of tips of the
growing inclusion and, hence, to study the evolution of in-
clusions of different shapes in the same environment. The
result of such calculation is shown in Fig. 23, where the
evolution of the ratio of the areas of inclusions of different
shapes to that of a twofold symmetric one is reported. The
data show that the difference of area between inclusions of
different shapes is of the order of 10% for Ac?=0.5% in the
range of sizes probed here, in agreement with the rough es-
timate provided above. These effects could even be stronger
for smaller supersaturations and larger inclusions, typical of
the later stages of coarsening, since the FRIs will be higher
in this case.

This example clearly shows that the coarsening rate of a
soft inclusion is quite sensitive to its shape. Since the shape
is also unstable against small changes in growth conditions,
the equilibrium GT relation alone does not provide an ad-
equate account of the growth dynamics, even in an idealized
environment. Thus, in complex configurations typical of re-
alistic microstructures, direct elastic interactions or modula-
tions in the solute concentration field could further affect the
shape of the inclusions, and hence strongly modify their
growth dynamics. This will be the subject of future
investigation.
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FIG. 23. Ratio of the areas of soft inclusions of different shapes
to that of a twofold symmetric inclusion for AcB=0.5%: continuous
line: twofold symmetric inclusion; dotted line: threefold symmetric
inclusion; dashed line: fourfold symmetric inclusion; dash-dotted
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fold symmetric inclusion.

IV. DISCUSSION

From the previous results, it is possible to infer the con-
sequences of elasticity on the coarsening of a collection of
inclusions, as long as direct elastic interactions between in-
clusions remain small compared to inclusion-matrix interac-
tions. In this dilute limit (which also implies quasistatic
growth), it is well known that the coarsening behavior of a
collection of inclusions is adequately described by the
Lifshitz-Slyozov-Wagner (LSW) model of ripening [48].
This model provides an evolution equation for the size dis-
tribution f(z,R) of a collection of inclusions interacting
diffusively, of the form

df,R) 9| dR
o (9R{ dtf(t’R)}’ (20)

where dR/dt is the rate at which an inclusion of radius R
grows. In the context of the LSW model, this rate is given by

dR 1
" E[Am - A/(R)], (21)

where A, [A/(R)] is the activity inside the matrix [inclu-
sion]. For simplicity, we ignore the presence of vacancies in
this derivation, so that a single activity can be used. In this
model, the activity of the matrix is taken to be proportional
to the solute supersaturation A(z), while the activity of the
inclusion follows the Gibbs-Thomson behavior. In order to

close the system of equations, we must enforce solute
conservation, i.e.,

oo

Qo=A(1) + J 7R*f(R,1)dR (22)

0

where Q, is the initial total supersaturation. Without loss of
generality, we adopt the following convention:
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FIG. 24. Time evolution of the average inclusion size for a LSW
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A,(t) = Alr) (23)
A0 = % + % if R=R, (24)
% if R>R,, (25)

with R, is the radius at which the shape transition occurs and
C is the Gibbs-Thomson prefactor for inclusions larger than
R..

We numerically carried out the integration of Eq. (20) and
computed the average inclusion size as a function of time
from f(R,t). The results are presented in Fig. 24 for values of
C ranging from 1 to 5. First, for C=1, corresponding to
either homogeneous or hard inclusions, the usual (R)=Kz'"3
behavior is obtained, as expected. For C >1 (soft inclu-
sions), two different regimes are observed. First, at low ra-
dius, the normal (R)=Kt' is seen, since in this range the
Gibbs-Thomson relation is unchanged. On the other hand,
for sizes much larger than R,, a t'/> behavior is also observed,
albeit with an increased prefactor K'. This is also expected,
since most of the size distribution function is then located in
a regime where the activity is again proportional to 1/R.
These two regimes are connected by a crossover region
whose width is related to the width of f(R,). The inset of
Fig. 24 shows that the prefactor in the large inclusion regime
is given byK'/K=C"3. Thus, our calculations show that, at
low volume fraction, elastic effects will not affect the scaling
exponent of the average size versus time but instead will
slightly modify the prefactor. These findings corroborate the
results and analysis of Thornton et al. [49] concerning the
coarsening behavior of a system of inclusions with homoge-
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neous and anisotropic elasticity, where a similar shape
transition is also observed.

In the above calculations, it was assumed that inclusions
are in their equilibrium configuration relative to their size.
However, as the volume fraction increases, larger chemical
potential gradients would be allowed to form, thus increasing
growth or evaporation rates of inclusions. In this context,
dynamical effects could affect the coarsening behavior in a
more profound way. Although homogeneous or hard inclu-
sions were shown to be largely immune to such effects, soft
inclusions are much more prone to shape transitions. These
transitions in turn affect their coarsening behavior, as shown
in the previous section. Although the normal LSW regime
will eventually be restored as the supersaturation of the ma-
trix decreases, the duration of the initial transient could po-
tentially be much longer than for homogeneous or hard in-
clusions. On the other hand, an increase of the volume
fraction will eventually lead to direct interactions between
inclusions through the strain field. These interactions are
known to drastically affect both the morphology of the inclu-
sion and their coarsening rate (see Ref. [1], for a recent re-
view). An analysis of the impact of direct interactions using
the TDDFT model is underway.

Note that this analysis did not take into account the pos-
sibility of oscillations of the chemical potential as a function
of size, as observed for hard inclusions in Fig. 8. A detailed
study of the origin of these oscillations and their significance
for coarsening will be presented elsewhere [47].

V. CONCLUSION

The results of Sec. III demonstrate that our multiscale
TDDFT-based model is able to reproduce known equilibrium
and dynamical properties of isolated inclusions and to reveal
insights about the role of elasticity in their evolution. Indeed,
for elastically homogeneous systems, the classical GT rela-
tion for circular inclusions is recovered. Under growth con-
ditions, the observed shape instabilities are in quantitative
agreement with the Mullins-Sekerka [5] theory. Our model
also enabled us to identify the mechanism via which certain
modes are preferentially excited by the discrete atomic lat-
tice. Departure from the predictions of the linear MS model
were observed and described. Finally, the impact of the
shape perturbations and of solute trapping on the chemical
potentials of the inclusions were quantified and shown to be
negligible in the conditions we studied.

Turning to hard inclusions, we observed that the circular
shape is stable and that the form of the GT relation is not
affected by elasticity, as expected. We also observed that
elasticity stabilizes hard inclusions against shape perturba-
tions during growth, in agreement with the theory of Leo and
Sekerka [6]. The magnitude of the solute trapping correction
to the chemical potential is observed to be large compared to
the homogeneous case because of the coupling between the
strain and concentration fields. However, this coupling
proves to be too weak to significantly affect the coarsening
rate of the inclusions.

Finally, for soft inclusions, we observed the transition
from circular shape at small radius to elliptic shape at larger
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radius and showed that the general shape of the GT curve is
not affected by this transition, but that its slope changes
abruptly at the transition point. Concerning dynamical prop-
erties, we observed that the shape of soft inclusions is ex-
tremely sensitive to the growth rate, even at very low super-
saturation, in quantitative agreement with the model of Leo
and Sekerka [6]. Strongly out-of-equilibrium shapes are
shown to initially form by a mode instability mechanism and
to grow by an elastically induced tip-growing mechanism.
The dynamical GT relations are shown to strongly depend on
the shape adopted by the inclusions so that dynamical cor-
rections have non-negligible effects on the growth rate of the
inclusions, even at very low supersaturation.

This first application of the TDDFT framework to multi-
scale calculation of elastically homogeneous and inhomoge-
neous systems shows that the method produces results that
are in good agreement with analytical models and other
simulation methods concerning both equilibrium and dy-
namical quantities. It also serves to illustrate the advantages
of the method: the only input is the potential through which
atoms interact; scale-dependent effects stemming from the
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existence of a fundamental length scale (the lattice param-
eter) are automatically taken into account and the multiscale
formulation enables large systems to be treated at a fraction
of the cost of Monte Carlo methods, etc. Although the
present formulation of TDDFT, even in its multiscale ver-
sion, cannot compete with macro- or mesoscopic methods to
simulate large systems with complex microstructures, it has
proven to be a good candidate to bridge the gap between
Monte Carlo methods and phase-field models, and to allow
the detailed investigation of intermediate-size systems.
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